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Abstract

We have studied the influence of convective theory uncertainties on the frequencies of solar
oscillations. We find that the turbulent pressure plays an important role in setting the
high R frequencies and a lesser role in setting the low and intermediate 2 frequencies.

The representation of the turbulent pressure thus is important to the interpretation of the
comparison between theory and observation. This uncertainty has not previously been
recognized and may account for some of the differences between the results of various
investigators since the exact value of the turbulent pressure was previousiy thought to have
minor importance. The uncertainties in the observed frequencies of solar oscillations are
too large at present to permit us to reach any conclusions about the structure of the solar
envelope

I. Introduction

We have studied the effect on the derived frequencies of the solar oscillations of using an
aljternate theory of convection to calculate the thermal structure of the solar envelope. The
convective theory normally used to calculate the structure of stellar envelopes is the mixing
length theory This theory is not fundamentally sound so that the derived structure is
uncertain. Ideally, we would use the correct theory of convection to derive the proper
structure in order to eliminate this uncertainty. Unfortunately, no correct theory of
convection is available and our only way of evaluating the effect of convective theory is to
use a different convection theory and hope that the differenc:» between the derived
frequencies is indicative of the uncertainty induced by convection. To this end we compare
the standard mixing length theory results to the resuilts using the non-local mixing length
theory described by Ulrich (1970a, 19768). This theory is an improvement over the standard

distance of a mixing length and derives the turbulent pressure and convective flux from a
similar non-local average. This theory nonetheless contains arbitrary parameters and
assumptions like the standard theory and is not fundamentally sound. It is nonetheless
distinct from a variety of local theories such as those due to Speigel (1963), Unno (1967) and
Gough (1?77) which end up with a formula which relates the convective flux at a point in the
enveiope to the temperature gradient at that same point. The last theory was primarily aimed
at the development of a time dependent treatment. Local theories as applied to a static
envelope differ in terms of the specific relationships between the variables but cannot
inciude the global coupling found in the non-local theory. As long as the solar models
deduced from the local theories satisty the constraints of luminosity and radius defining the
sun, the variations in detailed structure produced by these differences are more restricted
in character than the chanqges produced by the non-local theory.

We find two effects from using the non-local theory - first, the sound velocity is increased
just below the surface due to 3 steeper temperature gradient and second, the density and
pressure scale heights are lengthened in the low photosphere due to turbulent pressure from
convective overshoot. The second effect can also be induced in the local mixing length
theory by increasing the ratio of turbulent pressure to superadiabatic temperature gradient
This second effect dominates the frequency changes and causes the frequencies to decrease
when the non-local theory is used or when the turbulent pressure is increased. The changes
are greatest for the highest 2 values and also largest for the higher frequencies.




II. Convection Theory Uncertainties

Convection theory applied to stellar atmosphere structure contains several arbitrary
parameters which are normally related to a quantity called the mixing length. The
atmosphere structure equations require knowledge of the convective flux and the turbulent
pressure. Both quantities are derived from the products of fluctuations associated with
vertical motions in the atmosphere. The flux is proportional to p (er'> while the

turbulent pressure is proportional to p <v:). The quantity H’ in the flux expression

is the fluctuation in the enthalpy perturbation which is approxzimately equal to CP T*; CP

is the heat capacity at constant pressure and T’ is -the temperature fluctuation. Local
mixing length theory assumes that ¥ - vad' the difference between the actual average

temperature gradient d log T / d log P and the adiabatic temperature gradient
(3 log T /3 log P)s, is constant over a pressure scile height. The averages in the

expressions for the flux and turbulent pressure are then calculated using some model for the
motion of the convecting fluid. Usually this model takes the very simple form of an
assumption that a mass of fluid begins motion from a stationary condition, accelerates
unimpeded for a distance equal to the mixing length and then abruptly disappears. Clearly
the true state of a stellar atmosphere is more complex than this assumption. We focus our
attention on just two inadequacies of the mixing length theory:

1) The effective distance of travel involved in the average for (er')

need not be the same as the distance of travel for <vz),

2) The temperature gradient ¥ - vad changes significantly over a

pressure scale height near the point where the atmosphere becomes
convectively unstable.

Although mixing length theory is inadequate for numerous reasons, we concentrate on the

above two points because they are amenable to study with our presently available numerical
techniques.

II1. The Turbulent Pressure

In the context of mixing length theory we can define the point of origin of a mass of fluid
as that point in space and time when it has a zero average vertical velocity. This mass
accelerates, moves a distance zl in the vertical direction and then loses its coherence.
The theory which results may be written in the form:
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where *. and *p are roughly to be identified as the effective ratios of mixing length to

pressure scale height for the turbulent veiocity and convective flux respectively. The

sound speed is vsA The quantities <, and *p normally contain additional factors of

order unity which account for known thermodynamic derivatives, radiative heat exchange
between the fluid mass and its surroundings and other convection model dependent factors.
For the purposes of the exposition here we negiect these factors. The actual calculations
were made following the formulation described by Henyey, Vardya and Bodenheimer (1963 with
a few minor modifications described by Ulrich (1970 a,b).




When a model atmosphere is calculated, the structure equations require that essentially all
of the flur be carried by convection throughout the unstable layers exrcept for a very thin

zone just below the point of marginal stability. Consequently, equation (2) fixes (Vv - vad)'

The turbulent pressure p (vlz_) is then fixed to within a factor of (avlal_.)z. Because

the velocity and enthalpy fluctuations need not follow the same pattern of growth during the
motion of the mass of fluid, this ratio may differ from the value given by the standard
mixing length theory. In order to study the effect of this uncertainty, we have multiplied
the turbulent pressure by an additional factor p. When B = | we recover the mixing length
theory of Henyey et al (19495).

IV. Non-Local Effects

The second uncertainty we have studied involves the effects of variations with depth of

v - vad on the local averages (vt) and <er'). The theory described by Ulrich (1970¢)

provides a method for deriving each of these averages from an integral over the parameters
throughout a nearby region of the atmosphere. The algorithm for computing the structure
iteratively corrects the temperature distribution until the non-local averages produce a
convective flux which is equal to the total flux minus the radiative flux throughout the
convective envelope. Because of the extended and complicated coupling which this formulation
provides, convergence of the algorithm is slow and usually produces flux constancy to within
2 to 3 pe.cent. The final model is nonetheiess significantly different from the local
convection maodel and is well enough defined that meaningful comparisons are possible. The
principal differences between the non-local and the local models are:

1) The location of the mazimum in ¥V - ?a is displaced inward by about

d
one half a pressure scale height and the value of the maximum in
ATA vad is roughly doubled.

2) The nominally stable region just outside the point of marginal
stability has non-zero (vf_) bacause of convective overshoot.

The overshoot turbulent pressure is similar to the uncertainty in <vf_) discussed above in
the context of the local convective theory.

V. The Models

We have identified two areas of uncertainty in the convective theory describing the solar
envelope: 1) The ratio of turbulent pressure to convective flux and 2) The detailed
temperature gradient near the point of marginal convective stability. In order to study
these two effects we have computed three solar models which have characteristics given in
Table 1.

TABLE 1
SOLAR MODELS

»
Model 1 Standard solar model ~ local convective theory

and 8 = 1.
Model 2 Local convective theory model with § = 1.5.
Model 3 Non-local convection theory model using the

Ulrich (1970c) iterative procedure.

) 4

These models have UCLA reference numbers of 22L, 38, and 41 respectively. The previous
standard model was 22C. This model did not have proper consistency between equations 1
and 2. This inconsistency which has now been corrected does not appear to alter any of
our previous conclusions based on model 22C. The UCLA reference numbers will not be used
elsewhere in this report.



The structural changes produced by altering the value of p can be seen by comparing Models 1
and 2. Figure 1 shows this comparison in the two right hand panels. Each panel shows
differences between the models which have been interpolated so that points at equal distances
below the layer with optical depth unity are compared. These differences are then plotted as
functions of the depth below this same zero point. The change in B displaces the run of
physicai variables so that the model with smaller B has larqger temperature and density. The
change is smooth but involves essentially all the convection zone. In contrast, the use of
the non-local convection theory produces complex changes near the surface where the detailed
temperature and density stratification is redistributed. The overshoot process alters the
structure in the optically thin layers which were unchanged by the turbulent pressure
variation. Models 2 and 3 are compared rather than 1 and 3 since Model 2 matches Model 3
more closely in the deeper parts of the convection zone and thus provides a mors direct
indication of the specific influence of the non-local convection theory. The remaining
change in the asymptotic behavior is nonthaless similar to the change brought about by a
change in B although of opposite sign. Consequently, the two effects are combined in the
comparison of Models 2 and 3. Note in particular that the density difference between Models
2 and 3 is larger than the difference between Models 1 and 2.

VI. The Frequencies and Observations

Figure 2 shows the increase in frequency caused by decreasing 8 from 1.5 to 1.0 on the left.
On the right Figure 2 shows the increase in frequency caused by using the local convection
theory instead of the non-local theory. At least part of this change is a result of the
higher density and temperature in the deeper parts of the envelope of Model 2 as compared to
Model 3. Note however that at the higher values of v and 2 the pattern of frequency change
differs betwean the two parts of Figure 2. This pattern difference in principie can be used
to distinguish between the effect of p and the effect of the non-local theory. For values

of 2 less than 100 the frequency shifts were smaller than those shown in Figure 2.

The available observations fall into three groups: first, the global oscillations which have
been measured by Claverie, et al (1979, Grec, Fossat and Pomerantz (1980) and Woodard
(1984); second, the intermediate degree modes which have been measured by Duvail and Harvey
(1983), and Harvey and Duvall (1984); and the high degree modes which have been measured by
Deubner, Ulrich and Rhodes (1979) and Deubner (1983). The global modes have the most
precisely measured frequencies and the high degree modes the least precisely measured
frequencies. Unfortunately, the low degree modes are not able to distinguish between the
possible convection models and the high degree frequencies are not precise enough to provide
clear evidence. In fact even for the intermediate degree modes the uncertainty in the
irequencies given by Harvey and Duvall (1984) for the modes with 2 above about 40 WHz is 10
t»Hz and this uncertainty is large enough to prevent us from drawing definite conclusions.
Figures 3 to 5 show the comparison’ between the theory and observations. Model 1 is in
reasonably good agreement with Harvey and Duvall (1984) aithough the erratic trend in aAv
indicates that either the models or the observations are inaccurate. The errors in the
frequencies for the high 2 modes are clearly too large to permit a discrimination between

the models. Only Model 3 appears to be noticeably less satisfactory than the others.

In summary, we draw three conclusions:

1) The representation of the turbulent pressure is an important part of
mixing length theory.

2) The difference between the effects of turbulent pressure and the non-
local convection theory can be measured at high &%.

3) The low % mode frequencies are only slightly dependent on the
convection zone uncertainties.

4) Present frequency measurements are inadequate to permit us to reach
any conclusions concerning the properties of the solar convection zone.
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Figure 1 Comparison of the structure of the three solar models discussed in the text. Each

figure shows the fractional differences between pairs of models as indicated.
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Figure 2 Comparison of frequencies deduced for the three solar models.
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Tigure 3 Comparison cf the fraquencies for Mcdel 1 to observations. The observations are
from Duvall and Harvey, 1984 on the laft and irom Deubner, Ulrich and Rhodes,

1979 on the right.




40 T T T T T I
2 = 200
30 1 r -
20  #=3200 4 L 2= 3o i
Ri= 100 500
10 4 F -
Rl= 40
o - — - ond ——
AV R = 0
. =10 - - b -
(w= |
-20 | 4 | -
~50 ! /] 1 | ] i
2000 3000 4000 S000 2000 3000 4000 S000
v (puz) v (p.H:)

Figure 4 Comparison of the frequencies for Model 2 to observations from Duvall and
Harvey, 1984 on the left and from Deubner, Ulrich and Rhodes, 1979 on the right.
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Figure 5 Comparison of the fraquencies for Model 3 to observations from Duvall and
Harvey, 1984 on the left and from Deubner, Ulrich and Rhodes, 1979 on the right.
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